Department of Chemistry

Biochemistry & Chemical Biology

Research ImageGraduate students in biochemistry and chemical biology meld molecular and structural biology with physical, organic and analytical chemistry to understand the molecular basis of biological processes and of human disease. Research in the Biochemistry and Chemical Biology Division focuses on the structure and function of proteins, membranes, DNA, RNA, large macromolecular complexes and viruses, natural product biogenesis, synthetic biology, and genomics.

Students are a constant source of new hypotheses for mechanisms underlying cellular machines like the ribosome and spliceosome, and for the protein and RNA folding problems. Students tackle these problems using biochemical methods, chemical biosensor technologies, protein and nucleic acid crystallography, in vitro and in vivo evolution, multi-dimensional NMR spectroscopy, surface chemistry, atomic force microscopy, fluorescence spectroscopy, and high-resolution mass spectrometry.

Doctoral students in Biochemistry and Chemical Biology leave the Department broadly trained for leadership roles in academia and industry.

 

 

 

Protein Stability in Living Cells

The intracellular milieu differs from the dilute conditions in which most biophysical and biochemical studies are performed. This difference has led both experimentalists and theoreticians to tackle the challenging task of understanding how the intracellular environment affects the properties of biopolymers. Despite a growing number of in-cell studies, there is a lack of quantitative, residue-level information about equilibrium thermodynamic protein stability under nonperturbing conditions.

Research Image

William Monteith and Professor Gary Pielak, published in PNAS, report the use of NMR-detected hydrogen–deuterium exchange of quenched cell lysates to measure individual opening free energies of the 56-aa B1 domain of protein G (GB1) in living Escherichia coli cells without adding destabilizing cosolutes or heat. Comparisons to dilute solution data, pH 7.6 and 37 °C, show that opening free energies increase by as much as 1.14 ± 0.05 kcal/mol in cells. Importantly, this research also shows that homogeneous protein crowders destabilize GB1, highlighting the challenge of recreating the cellular interior. William and Gary discuss their findings in terms of hard-core excluded volume effects, charge–charge GB1-crowder interactions, and other factors. The quenched lysate method identifies the residues most important for folding GB1 in cells, and should prove useful for quantifying the stability of other globular proteins in cells to gain a more complete understanding of the effects of the intracellular environment on protein chemistry.

 

Dual Action Antibacterial Agents

Published in Bioconjugate Chemistry, researchers in the Schoenfisch Group describe the synthesis of nitric oxide, NO, releasing quaternary ammonium, QA, functionalized generation 1, G1, and generation 4, G4, poly(amidoamine), PAMAM, dendrimers. Dendrimers were modified with QA moieties of different alkyl chain lengths, such as methyl, butyl, octyl, dodecyl, via a ring-opening reaction. The resultant secondary amines were then modified with N-diazeniumdiolate NO donors to yield NO-releasing QA-modified PAMAM dendrimers capable of spontaneous NO release.

Research Image

The bactericidal efficacy of individual, non-NO-releasing, and dual action, NO-releasing, QA-modified PAMAM dendrimers was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacteria. Bactericidal activity was found to be dependent on dendrimer generation, QA alkyl chain length, and bacterial Gram class for both systems. Shorter alkyl chains, such as methylQA and butylQA, demonstrated increased bactericidal activity against P. aeruginosa versus S. aureus for both generations, with NO release markedly enhancing overall killing.

 

Representative Publications

RNA Motif Discovery by SHAPE and Mutational Profiling (SHAPE-MaP). Nathan A Siegfried, Steven Busan, Greggory M Rice, Julie A E Nelson & Kevin M Weeks. Nature Methods 11, 959–965 (2014).

Residue Level Quantification of Protein Stability in Living Cells. William B. Monteith and Gary J. Pielak. PNAS July 21, 2014, doi: 10.1073/pnas.1406845111 .

Nitric Oxide-Releasing Quaternary Ammonium-Modified Poly(amidoamine) Dendrimers as Dual Action Antibacterial Agents. Brittany V. Worley , Danielle L. Slomberg , and Mark H. Schoenfisch. Bioconjugate Chem., 2014, 25 (5), pp 918–927.

Protein Crowder Charge and Protein Stability. Mohona Sarkar, Joe Lu, and Gary Pielak. Biochemistry, 2014, 53 (10), pp 1601–1606.

Strategies for Protein NMR in Escherichia coli. Guohua Xu, Yansheng Ye, Xiaoli Liu, Shufen Cao, Qiong Wu, Kai Cheng, Maili Liu, Gary J. Pielak, and Conggang Li. Biochemistry, 2014, 53 (12), pp 1971–1981.

Long-Wavelength Fluorescent Reporters for Monitoring Protein Kinase Activity. Nathan P. Oien, Luong T. Nguyen, Dr. Finith E. Jernigan, Prof. Melanie A. Priestman and Prof. David S. Lawrence. Article first published online: 6 MAR 2014, DOI: 10.1002/anie.201309691.

Low Copy Numbers of DC-SIGN in Cell Membrane Microdomains: Implications for Structure and Function. Ping Liu, Xiang Wang, Michelle S. Itano, Aaron K. Neumann, Aravinda M. de Silva, Ken Jacobson, Nancy L. Thompson. Traffic, Volume 15, Issue 2, pages 179–196, February 2014.

The Cellular Environment Stabilizes Adenine Riboswitch RNA Structure. Jillian Tyrrell, Jennifer L. McGinnis, Kevin M. Weeks, and Gary J. Pielak . Biochemistry, Article ASAP, DOI: 10.1021/bi401207q.

Impact of Reconstituted Cytosol on Protein Stability. Mohona Sarkar, Austin E. Smith, and Gary J. Pielak. Published online before print, November 11, 2013, doi: 10.1073/pnas.1312678110 PNAS November 11, 2013.

Molecular Basis for pH-Dependent Mucosal Dehydration in Cystic Fibrosis Airways. Alaina L. Garlanda, William G. Waltonb, Raymond D. Coakley, Chong D. Tan, Rodney C. Gilmore, Carey A. Hobbs, Ashutosh Tripathy, Lucy A. Clunes, Sompop Bencharit, M. Jackson Stutts, Laurie Betts, Matthew R. Redinbo, and Robert Tarran. PNAS, September 16, 2013, doi: 10.1073/pnas.1311999110.